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The present paper deals with the strong convergence of trajectories

S(t)x of a strongly continuous semigroup of contractions

S(t),

as t - ow.

A general sufficient condition for such convergence to occur is introduced and

some examples in which the condition is satisfied are provided.

Strengthen-

ing the general convergence condition, sufficient conditions for certain rates

of convergence of S(t)x to its limit are exhibited.

In.particular a

sufficient condition for a trajectory to reach equilibrium in finite time

is given. The convergence as t =+ ® of solutions of certain nonautonomous

equations and a discrete version of all the previous results are briefly

discussed.
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SIGNIFICANCE AND EXPLANATION

Many of the phenomena in nature are governed by a special type of equation
called-an evolution equation. What characterizes these equations is that the
state of the system, described by the equation, at the time t uniquely deter-
mines the whole future evolution of the system. Some examples of such evolu-
tion processes are: The motion of a pendulum, temperature distribution in a
conducting body, diffusion of salt in water, certain flows of fluids etc. The
equations describing each one of these phenomena are of course different but they
all have in common the property mentioned above namely, the state of the system
at each time t determines the whole future uniquely.

One of the natural questions that arises concerning such evolution systems
is what happens to the system after a long time (or as time tends to infinity).
Since the whole future is determined by the equation and the initial conditions
which are known to us, we should be able to predict the behavior of the system
as time goes to infinity, or in other words the asymptotic behavior of the system.

An evolution system may have different types of behavior as t - «». One
of the most common behaviors is that the solution converges to a staticnary
(i.e. time independent) solution of the problem. For example the temperature
in an 1nsulated body without sources of heat will tend exponentially to a constant
temperature. The motion of a pendulum, taking into account friction, will
eventually stop. If the friction is small it will be only as t -+ « that the
pendulum will stop. If the friction is "large" it will stop in finite time.

In this paper we deal with the asymptotic behavior of a class of evolution
equations. We give conditions on the equations that guarantee that the solution
will tend as t > ® to a stationary solution, whatever the initial data are.

We study the rate of convergence to this stationary state. In particular we
give conditions for which the stationary state is attained in finite time.

As we mentioned above, the initial data determine the whole future of the
system uniquely. Therefore in principle it should be possible to determine
a-priori the limiting state of the system for any given initial conditions. 1In
certain simple cases this is indeed the case. 1In general however, (t is very
difficult to predict the limit without solving the equations. It is even difficult
to give nontrivial estimates on the "location" of this limiting solution. We

discuss this problem in the present paper via a specific example of heat conduction.

summary lies with MRC, and not with the author of this report.




STRONG CONVERGENCE OF SEMIGROUPS OF NONLINEAR CONTRACTIONS IN HILBERT SPACE

A. pazy*

§1. Introduction

Let H be a real Hilbert space, C a closed convex subset of H and S(t) : C - C
a strongly continuous semigroup of contractions on C. The purpose of the present paper
is to study the strong convergence of the trajectories S(t)x, x € C of S(t) as t > =.
In Section 2 we introduce a rather general condition on the generator A of a

semigroup S(t), called the convergence condition. This condition assures the strong

convergence of S(t)x as t >« for every x € C. It can be seen by simple examples
(e.g. example 4.5 of the present paper) that the convergence condition is not necessary

in order to have strong convergence of S(t)x as t + », for all x € C. The convergence
condition, introduced in Section 2, contains as special cases most of the previously

known sufficient conditions for strong convergence of all trajectories of a semigroup

of contractions in Hilbert space. The only known notable exceptions are semigroups
generated by subdifferentials of l.s.c. (lower semicontinuous) even convex functions (see
[6]) and semigroups having a fixed point set with nonempty interior (see [3], [8]).

In Section 3 we study the convergence condition more closely. We show that certain
natural compactness assumptions on the resolvent of A together with a simple geometric
condition.on the tangent of the trajectory at each point imply the convergence condition.
In particular we prove that the convergence condition is satisfied if A is the sub-
differential of a l.s.c. convex function ¢ whose level sets are compact and as a
consequence we obtain a result of H. Brezis [3]. The second part of Section 3 is devoted
to some simple examples of the way that the abstract results of Section 2 can be applied
to the study of the asymptotic behavior of certain nonlinear parabolic partial differential

equations.

+ p < N
Permanent address: Institute of Mathematics, the Hebrew University of Jerusalem.
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In general, the convergence condition introduced in Section 2 does not imply any
special rate of convergence. It is not difficult to construct examples in which the
convergence is as slow as one wishes, or very fast. In many cases however, a slightly

stronger condition, called the uniform convergence condition is satisfied. If this is

the case, one can usually obtain some information on the rate of convergence of S(t)x to
its limit p as t > @. The uniform convergence condition is the subject of Section 4.
Among other consequences of the uniform convergence condition we give in Proposition 4.8,
sufficient conditions for S(t)x to attain its limit in finite time.

Section 5 is devoted to a brief consideration of the asymptotic behavior of solutions
of certain nonautonomous initial value problems. In particular we show that if A
satisfies the convergence condition, not only does every trajectory of S(t), the semi-
group generated by A, converge as t » © but also all solutions of the initial value
problem

w, + Au 3 f(t)

(1.1)
u(0) = x

with £(¢t) € Ll((O,m):H) converge strongly as t » o,

In Section 6 we study a discrete version of the main convergence results of this
paper. The results of this section are related to a recent paper of H. Brezis and
P. L. Lions [5].

The convergence condition assures that S(t)x > p as t > ® where p 1is a fixed
point of S(t). If the set F of fixed points of S(t) contains more than one point,
the natural question of the identification of the limit point p in terms of the initial
value x arises. Very little is known in general on this difficult problem. In
Section 7 we study in somewhat greater detail an example of a nonlinear Neumann problem.
In this example we use the techniques developed in this paper together with some standard
tools as the maximum principle to prove the convergence of the solutions of this problem
to fixed points, to estimate the rate of this convergence and to obtain some a-priori
estimates on the limit in terms of the initial data.

Finally, I would like to express my gratitude to H. Brezis and M. Crandall for

several stimulating discussions concerning the results of this paper.
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§2. The convergence theorem

Let H be a real Hilbert space with inner product ( , ) and norm | I. Let A
be a maximal monotone set in H X H and let S(t) be the semigroup of contractions
generated by A. For a systematic exposition of the theory of monotone operators and
semigroups of contractions in Hilbert space see [2]. We denote by F the (possibly
empty) set of fixed points of the semigroup S(t), that is
(2.1) F={x:xe D@, S(t)x =x Vvt >0} .

It is not difficult to see that
(2.2) F=alow{x:xeD®, a% = 0}
where on is as usual the element of minimum norm in the set Ax. Since Aal is
maximal monotone together with A, F is always a closed and convex subset of BTKT.
If F # ¢ we shall denote by P the projection on F.
Definition 2.1:
A maximal monotone set A C H x H satisfies the convergence condition if:
a) F = A-lo is not empty.
b) (y,x - Px) > 0 for every [x,y] € A such that x ¢ F.

c) If [xn,yn] € A, lxn[ < S, |yn| < C and (Yn,xn - Pxn) + 0 as n + o then

lim inf dist(x_,F) =0
N

where dist(y,F) is the distance between the point y and the closed convex set F.
Remark: For reasons of later convenience we stated part (b) of the definition explicitly
even though it is clearly implied by part (c).

Our main result is the following theorem.
Theorem 2.2:

Let A be maximal monotone and let S(t) be the semigroup generated by A. If A
satisfies the convergence condition then for every x € ETKT, S(t)x converges strongly
as t + o to a fixed point of S(t).

In the proof of Theorem 2.2 we shall need the following two lemmas.

3=
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Lemma 2.3 (Baillon-Brezis [1]):

Let S(t) be a semigroup of contractions on a closed convex subset C C H. If
F# ¢ and P is the projection on F, then for every x € C, PS(t)x converges strongly
as t = o

Proof: Since P is the projection on F, we have;

(2.3) lbv -ul®? < |v-ul®~|ev-v|]? wewn uer.

Substituting v = S(t + h)x and u = PS(t)x into (2.3) we obtain

Ips(t + myx - ps(tyx]? < |s(t + hyx - ps()x]? - |S(t + Wx - Ps(t + Wx|? <

A

|s(t)x - ps(t)x|2 - |s(t + hyx - ps(t + mx|? .

(A

Therefore, tw |S(t)x - PS(t)xI2 is monotone nonincreasing and PS(t)x is a Cauchy net. ®
Lemma 2.4:

Let A be maximal monotone with F = A-lo # ¢. If x € D(A) then PS(t)x is
differentiable a.e. in t and

dpPs (t) x

(2.4) at

»S(t)x - PS(t)x| = 0 a.e. in t >0

Proof: For x € D(A), S(t)x is Lipschitz in t and since P is nonexpansive PS(t)x
is Lipschitz in t and therefore differentiable almost everywhere.

From the definition of P it follows that

(2.5) (PS(t + h)x - BPS(t)x, S(t)x PS(t)x) <0 .
Dividing (2.5) by h > 0 and h < 0 and letting h -+ 0 the result follows. L]

Proof of Theorem 2.2:

If x € D(A) then

ds (t)x

0
at + A'S(t)x

(2.6)

]
o

Multiplying (2.6) by S(t)x - PS(t)x and using Lemma 2.4 we obtain
2.7) %(% Is(tyx - ps(t)x|? + A%s(t)x,s(t)x - PS(B)x) = O .

Since (A°S(t)x,S(t)x - PS(t)x) > 0 it follows that t » |[S(t)x - PS(t)x| is monotone

1
nonincreasing. From (2.7) it also follows that (Aos(t)x,s(t)x - PS(t)x) € L (0,»).

.




0
Therefore there is a sequence tk + ® such that (A S(tk)x,S(tk)x 2 Ps(tk)x) + 0 as

0
t, > . sSince F#¢ implies that |s(t)x| is bounded and [A’s(t)x| < 12%] for

all t > 0 it follows from the convergence condition that liminf |S(tk)x = Ps(tk)x! =0
k>
and since t b |S(t)x = PS(t)x| is nonincreasing, |S(t)x = Ps(t)xl *=0 as £t »»,

Finally, it follows from Lemma 2.3 that |Ps(t)x = pl +~0 as &t >« for some p€ F
and therefore S(t)x - p as t > ». This concludes the proof for x € D(A). For
x € D(A) the result follows from a simple continuity argument. L]

We turn now to a perturbation theorem. 1In order to state it we shall need the 1
following definition.
Definition 2.5:

Two multi valued operators A and B are relatively locally bounded if for every

R > 0 the boundedness of the set {(A + B)x : x € D(A) N D(B), |x| < R} implies the
boundedness of the sets {Ax : x € D(A) N D(B), |x| <R} and {Bx : x € D(A) N D(B), |x|<R}.
Note that if one of the two operators A or B 1is locally bounded i.e. it maps
bounded sets into bounded sets then A and B are always relatively locally bounded.
Theorem 2.6:
Let A be maximal monotone and let B be monotone such that A + B is maximal

monotone. If A satisfies the convergence condition and

‘ =1 =%
= D %
&P B@ FB FA & O

ii) A and B are relatively locally bounded
then A + B satisfies the convergence condition.

Proof: From our assumptions it follows that F J FA (2 15 P o and therefore

A+B B A

F £ If %€ F then there are n, € Ax and n2 e Bx such that ©n, + i, = 0.

A+B A+B b g

Multiplying this equality by x - pr where PA is the projection on FA' we have

(n,,x = PAx) + (n2,x - PAx) = Q0 .

1
Since PAx € FB’ both terms must vanish and therefore by the convergence condition

X = pr i.e. xe¢ FA' Therefore FA+B - FA and PA+B = PA' Assume now that

(x_ v 1€a+B, |xn] <8, ]ynl <C and (y_ .x - ) 0 as n > =, Set

P X
A+B n

G-




y =n +n° where n_ € Ax and n' € Bx then
n n n n

¥ = PUx + tax. — P
(nn. . n) (nn.

A - Axn) -> 0

as n > ®, Since both terms are nonnegative we have (nn,xn = PAxn) -+ 0. From (ii) we

deduce that |nn| < R and therefore it follows from the convergence condition that

there is a subsequence {nk} such that |x - Px | + 0 and thus A + B satisfies
the convergence condition. L
Remark 2.7:

In the previous theorem the condition that B is monotone can be replaced by the

following assumption; there is a k > 1 such that A + kB is monotone. To see this,

: : = : R = =
note that in this case k lA + B is monotone and defining Al = (1 -k )a, B1 =k lA + B,
Bl is monotone and the pair Al' Bl satisfies the conditions of Theorem 2.6 therefore
A, + B, = A + B satisfies the convergence condition.

1 8 |
We conclude this section with a proposition showing that if A satisfies the

Ete & i i i - =
convergence condition so does its Yosida approximation AA = A 1(1 - (I + 2n) 7).

Proposition 2.8:
Let A be maximal monotone. If A satisfies the convergence condition, then for

every A > 0, AA satisfies the convergence condition.

Proof: It is easy to see that FA = FA and therefore FA # ¢ and the projection on
A A
Fa is the same as the projection on Fp- We denote this projection by P. Let |xn| <cC,
A

|A/\xn| < C and,

2
(2.8) (Ayx ,x = Px ) = (Ax ,Jx - Px) + )\lAAxn‘ +0 as n > o .

Since IAAx | < C also |J X ‘ are bounded. From (2.8) we deduce that lA X | +Q as
- e A'n A'n

n* o and that (A;x ,J. x = Px ) - 0. Since A,x € AJ.x it follows from the
Xm oA n n A'n A"n

convergence condition that 1liminf IJ x = Px I = 0 but |x = Ji % I = A]A X ] * 0 &8s

aa A'n n n A"n A'n
n + ® and therefore liminf [xn ~ Pxnl = 0 and the proof is complete. .

noo
-6
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§3. The convergence condition and some examples

In this section we shall see some sufficient conditions for a maximal monotone
operator A to satisfy the convergence condition. After this we shall give some simple
concrete examples for which the condition is satisfied.

Let ¢ be a proper convex lower semicontinuous (l.s.c.) function and let A = 3¢
be its subdifferential. It is well known (see e.g. [2] example 2.3.4) that A is
maximal monotone and we have,

Proposition 3.1:
Let ¢ be a proper convex l.s.c. function on H satisfying ¢(x) > 0 and

Min ¢ (x) = 0. 1If for every R > O the level sets
X€ H

(3:.1) K, = ix : |x| <R, ¢(x) <R}

are precompact then A = 3¢ satisfies the convergence condition.
Proof: Since by assumption, the minimum of ¢ (x) is attained F = A-lo # ¢. From the
definition of 3¢ we have
¢ (Px) - ¢(x) = w(x) > (y,Px - x) ¥(x,y] € A
and therefore (y,x - Px) > ¢(x). Let |xnl <c, Iyn| el b I Axn and (yn,xn = Pxn) =+ 0.
This implies ¢(x ) > 0 and therefore w(xn) < C for n large enough. Since {xn}
lies in a precompact set KC it has a converging subsequence {xnk}. Let x + x, by
the lower semicontinuity of ¢ it follows that ¢(x) = 0 and therefore x € F and

liminf dist(x_,F) = O. L
n-ew i

Remark: The consequences of Proposition 3.1 namely, the strong convergence of S(t)x as
t > @ under the assumptions of Proposition 3.1 were proved by H. Brezis ([2], theorem 3.11)
by a different method.
Our next proposition is a generalization of the previous proposition to the case
where A is no longer a subdifferential of a convex function.
Proposition 3.2:

10 # ¢. If for every |[x,y] € A,

Let A be a maximal monotone operator with F = A~
x £ F, (y,x =Px) >0 and (I # l\)-1 is a compact operator then A satisfies the

convergence condition.




Proof: We have only to show that A satisfies part (c) of the convergence condition.
=¥
We first check that if (I + A) is compact then for every R > 0 the set

(3.2) E, > {x : xe D), |x| <R, |y|] <R for some y € Ax}

is precompact. This follows immediately from the following observation; if MR is the

image of BR = {x : Ix] < R} by the mapping (I + A).1 then ER/Z (o Mp- Indeed
X € ER/Z implies |x|< R/2, lexI <R/2 wmoif zex+ on, | z| <R and x = (I + A)-lz.
Therefore x € M_.

R

Assume now that (x ,y ] € A, [x | <¢c, |y | <c and (v ,x - Px ) > 0. From the
n'*n n' = n n'"n n

compactness of E it follows that there is a subsequence xn such that xn SX  as

K k k
LA Therefore, Pxnk + Px. Passing to a subsequence of (nk} if necessary, we
can assume that vy converges weakly to some y and deduce from the maximality of A
that [x,y]l] € A and (y,x - Px) = 0. From our hypothesis it now follows that x = Px
i.e. x € F and so dist(xnk,F) + 0 as nk + o. Therefore part (c) of the convergence
condition is satisfied and the proof is complete. L

We turn now to some simple examples. In these examples ( will be a bounded
domain in R" with smooth boundary 9. H will be the Hilbert space LZ(Q), its
norm will be denoted by Il'“ and B will be a maximal monotone graph with primitive
j(x), i.e. Jj(x) 1is a proper convex lower semicontinuous function on R such that 8 = 3j.

Example 3.3:

L%m consider the operator A

et 0e¢e B(0). In H= 0 defined by:
(3.4) DAy = {u: ue #i(@). g—:e ~g(u) a.e. on 230}
and
{3:5) Aou =@ for ue D(AO) “

2 3 o g 2
Here H () is the usual Sobolev space consisting of all functions u which are in
2 s $ i i
L7 () together with all their second order distributional derivatives and n is the

outward normal to 23Q. It was shown in [3] that AO = Bwo, where %o is a proper

convex l.s.c. function given by




/ IVu|2dx +§ folde for ue€ B0 and diul e LoD
Q N

N =

(3.6) wo(u) =

i otherwise

Therefore, in particular, Ao is maximal monotone. From Rellich's compactness theorem

it readily follows that the sets

(3.7) K. = fu:ue 2@, [Jull <c, v <c)

are precompact in Lz(u) for every real C. Also clearly O € FA + therefore FA * ¢
0 0

and we can apply Proposition 3.1 to show that for every U € LZ(Q) the solution of the

initial value problem

du 3 £
E-AU_O in Q x (0,x)
Ju

(3.8) = 5;'5 B (u) on 3Q x (0,x)

u(o,x) = uo(x)

converges strongly as t * ® to a solution of the equation AOV = 0.
Remarks: This result can also be derived from a theorem of R. Bruck [6] stating that
if A = 3¢ for some l.s.c. proper convex function ¢ and F # ¢ then for every

uy € D(A) the solution of the initial value problem

u, + Au 30
(3.9) 5

u(0) = ug

converges weakly as t -+ @ to some solution of on = 0. Using the compactness of the

sets KC defined by (3.7) one sees easily that the convergence of the solutions of the
initial value problem (3.8) is actually strong. The strong convergence of the solutions
of the initial value problem (3.8) was first proved by H. Brezis in [3] using estimates

on the decay of the derivative ut of the problem (3.9) in conjunction with the

compactness of the level sets KC.

For the problem (3.8) it is not difficult to characterize the set of possible limits
of solutions FA = A;lO- Indeed, FA is the set of all constant functions u(x) = u

5 <0 0
where p € £ ~(0).




Next we perturb the problem (3.8) as follows. Let B be a bounded linear operator

on Lz(Q) satisfying

(3.10) 8]l =1
and
(3.11) B-1 = -1

Clearly the operator I + B is monotone and since it is everywhere defined and continuous
it is maximal monotone. Moreover, by a standard perturbation theorem (see e.g. [2],
corollary 2.7) AO + I + B 1is maximal monotone. From (3.11) it follows that FI+B

contains all constant functions u{x) = a and therefore

(3.12}) F DN

Invoking Theorem 2.6 we obtain

Proposition 3.4:

For every u0 € D(Ao) the solution of the initial value problem

g% -Adu +u+Bu=0 in 9 x (0,®)
(3.13) - %% € B(u) on 3Q x (0,x)
u(0) =u

0

; g =1
converges in L2(Q) as t +» to a constant a(uo) satisfying a(uo) € B8 (0).

Example 3.5:

Let 2, H and B be as above and assume again 0 € B(0). Let Al be defined

as follows:

(3.14) D(A)) = {u:ue BE@Q N Hé(Q). B(u) € L2}

and

(3.15) Alu = =Au + B(u) for u e D(Al)

It is well known, see e.g. [3] that Al = Bwl where wl is a proper convex l.s.c.

function given by

~10-




% [ lval®ax + | joiae for ne Hé(Q) and i) e L@
(3.16) e ) = Q Q

+D otherwise .
Again, it follows easily from Rellich's compactness theorem that the sets

K.={u:ue t2@), ||ull <€ e <cl

: 2 ~ . . .
are precompact in L () for every real C. The set Allo is in this case the singleton

{0} and from Proposition 3.1 we deduce that all the solutions of the initial value problem

%% - Au + B(u) 20 in O x (0,x)
€2.17) u=0 on 30 x (0,«)
u(0) =u

0
converge strongly to zero as t - =,

Consider now the first order operator

s du
(3.18) Lu= ) b, —

is1 i Bxi
defined say on Hé(ﬂ). L is clearly monotone and Al + L is maximal monotone. This
follows from a perturbation theorem for maximal monotone operators ([7], theorem 4.4)

and the estimate

(3.19) IILull < e!IAlull + C(e)llul

that holds for every € > 0 and u € D(Al) because of the compactness c¢€ k< embedding
of HZ(Q) n Hé(ﬂ) in Hé(ﬂ). The estimate (3.19) also shows that Al and L are rela-

tively locally bounded since u € D(Al),||uu < R, II(A1 + L)ul| < R imply

(3.20) “Alu“ < ||(A1 + Lyufl + [|zul|

| A

R + c”Alu” +C(e) * R

which implies that ”Alu|| is bounded.

Since clearly O € FL = L-lo, FL 2 FA and we can apply Theorem 2.6 to obtain;
1

Proposition 3.6:

For every u, € D(Al) the solution of the initial value problem

-11_




%% - Au + B(u) + Lu 30 in Q x (0,=)
(3.21) u=20 on 930 x (0,«)

u(0) = uy

2
converges in L () to zero as t - «.

=12=
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In Section 2 we saw that if a maximal monotone operator A satisfies the convergence
condition (see Definition 2.1)

then all the trajectories of the semigroup

S(t)
by A converge strongly to fixed points of S(t).

generated
Nothing however, can be said, in
general, on the rate of this convergence or on the identification of the limit point in
terms of the initial data.

In this section we shall study some special cases of semigroups for which the rate

of convergence of the trajectories to fixed points of S(t)

can be determined.
In order to study the rate of convergence we introduce gauge functions as follows:
Definition 4.1:

A function o [0,®) - [0,) 1is called a gauge function if p(s) > 0 for s > O
and lim p(s ) = 0 implies 1liminf s = O.
et n n

n->o

In terms of gauge functions the convergence condition (Definition 2.1) can be restated
as follows.

A maximal monotone operator A satisfies the convergence condition if
=1 ! .
F=A 0% ¢ and for every constant C > 0 there is a gauge function
(4.1)

Dc(s) satisfying
(y,x - Px) > rlc(lx - px|)
for all [x,y] € A such that

|x] < C and

|y| < C. The gauge functions oc(s), for
an operator satisfying the convergence condition are given by
(4.2) pels) = Infl(y,x - Px} « [x,yl e B, |x| 2 ¢, g g€ |x=~px| =5} .
In some applications the gauge functions oc(s) given in (4.2) are independent
of C. In this case we have,

Definition 4.2:

A maximal monotone operator A satisfies the uniform convergence condition if
: =% : :
F'=A "0# ¢ and there exists a gauge function

¢ (s)
(4.3)

such that
Yyex = Px) > p([x = le)

Example 4.3:

Vi, vl € & .

Let A be a strongly monotone operator i.e. there is a positive constant «a such that
2
4.4 - > -
(4.4) g % = %) _»ale x|

9 V[xi,yi] € A .

-13-
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1If F# ¢ we can replace x by Px to obtain (4.3) with the gauge function ¢ (s) = a52

2 1

Note that it follows from (4.4) that A-lo contains at most one point. A concrete
example which is strongly monotone is given by A = -A with Dirichlet boundary conditions

on a bounded domain §. This follows from:

(v

- [ bu-uadx=[ |Vu|2dx 9 i |u|2dx
Q Q Q

where the last inequality is Poincaré's inequality.

Example 4.4:

Let A be a maximal monotone set such that F = A_IO # ¢. Assume further that

there is a p € F such that O € int Ap. Let BD(O) = {x : |x| <p} C Ap then
(y -~ pou, x=p) 20 ¥[x,y] € A and all u satisfying [u[ <p

Therefore,

(4.5) (y,x - p) > p|x - p| &

It follows from (4.5) that F = {p} and therefore A satisfies the uniform convergence
condition with p(s) = ps.
Example 4.5:

Let A be a linear maximal monotone operator which is o-angle bounded i.e. there

is a constant o > 0 such that
(Ax,y) < o(Ax,x) + (Ay,y) for all x,y € D(A) .

If the range of A, R(A), 1is closed then A satisfies the uniform convergence
condition. Indeed, from the closed graph theorem it follows that there is a positive
constant a > 0 such that
(4.6) |ax| > a|x - px| for all x e D(A) ,
where P is the orthogonal projection on N(A) =F = A_lo. From the angle boundedness
of A it follows that

/2

/Z(Ay,y)l for all x.,y e D(A) .

(Ay,x) < 2/o (Ax,x)1
Now, since R(A) is closed H = R(A) ® N(A) and A restricted to R(A) N D(A) is
one to one and maps R(A) N D(A) onto R(A). Let x € D(A) then x - Px € R(A) and

there is a y € R(A) N D(A) such that x - Px = Ay. Since y € R(A), Py = 0 and we have

=14~




s

2
lx - Px| = (Ay,x - Px) < 2/o (Ax,x - F‘x)l/z(y,l\y)l/2 = 2/o !x - lel/zlyll/z(l\x,x - Px)l/z.
But from (4.6) it follows that lAy] 2 u|y| and therefore

Ix - px|? < 2\/§ Ix - px| (Ax,x - px) /2

which implies
(4.7) (Ax,x - Px) > = |x - px|? .
— 40

Note that if A is self adjoint then it is angle bounded and o0 = 1/4. So if A is
self adjoint and R(A) is closed A satisfies the uniform convergence condition.

On the other hand it is well known that if A is a positive self adjoint operator
then S(t)x > p as t >« for every x € H. Since it is rather easy to exhibit a
positive self adjoint operator that does nof satisfy the convergence condition we see,
as we have already mentioned in the introduction, that the convergence condition is not
necessary for the strong ceonvergence of S(t)x as t > o,

A simple example of a self adjoint positive bounded operator that does not satisfy
the con;ergence condition is given in the real 22 space by Ax = (n—lgn} where

o

o
x = {En}n=1' It is easy to check that N(A) = {0} and that if we denote by N {Gnk}k=1

o
we have (Ae ,e ) + 0, |le | =1, |ae [ <1 but {e } has no subsequence that
n n n n' = n n=1
converges strongly to zero.

When A satisfies the uniform convergence condition we can often estimate the rate
of convergence of S(t)x to its limit as t »* «. Two typical examples will be given
below. We start with the following lemma.

Lemma 4.6:

If A satisfies the convergence condition and p = lim PS(t)x then
t-re0

(4.8) [stt)x - p| < 2|s(t)x - PS(t)x| ¥x € D(A) .
Proof: We have already proved in Theorem 2.2 that if A satisfies the convergence

condition then

1im S(t)x = lim PS(t)x = p .
tox tow
-15~




From the proof of Lemma 2.3 it follows that if s > t then

|ps(s)x - PS(t)x|2 < |s(t)x - ps(t)x|? - |s(s)x - PS(s)x|2 : |

Letting s » @ we obtain

(4.9) Ip - ps(t)x|? < |s(t)x - ps(t)x|?
and therefore,
[s(t)x - p| < [s(t)x - PS(t)x| + |PS(t)x - p| < 2|s(t)x - PS(t)x]| . .

Remark: Letting t + 0 in (4.9) yields
(4.10) }p = le & lx - px|
which gives us some information on the location of the limit p. Simple examples in Rz
show that we may have equality in (4.10).
Proposition 4.7:

Let A be maximal monotone. If A satisfies the uniform convergence condition
with a gauge function p (s) such that p(s) 3_c52 then the convergence of S(t)x to
a fixed point has exponential rate, i.e. for every x € BTKT there is a p € F such that

P X = le .

(4.11) Isttyx - p| < 2e
Proof: We assume first that x € D(A). Multiplying the equation
ut + Au 3 O
by u - Pu we obtain
%Ed- Iu - Pulz - c|u = 1>u|2 <0

which implies
(4.12) lu - Pu| < e %|x - px|
and the result now follows from Lemma 4.6. The result for x € B?RT is obtained by
continuity. L]

Assuming some stronger conditions on the gauge function p(s) we obtain convergence

to the limit in "finite time".

Proposition 4.8:

Let A be maximal monotone satisfying the uniform convergence condition with a gauge

function o(s). If p(s) is measurable and for every C > 0

-16-
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o
(4.13) f ETiT’ds < ™
0

then for every x € D(A) there exists a Tx' 0 :_Tx <o and a pé€ F such that S(t)x
for all t > T . Moreover

-px]|

[x
(4.14) 2 % g

Proof: We start again with x € D(A) and obtain the result for every x € D(A) by
continuity. TFrom the uniqueness of the solution of the initial value problem
+
ut Au 3 0
u(0) = x

(4.15)

it follows that if for some 0 < to < =, u(to) = p € F then wm(t) = p for all t > tye

We define:

X

(4.16) Gx) = [ ==
0

p(s)

ds

It follows from (4.13) that G(r) is well defined and satisfies G(r) > 0 for r > O.

el .

Let s(t) = Iu(t) - Pu(t)|. Multiplying (4.15) by u - Pu we obtain
o a 2
(4.17) 5 gE 5B +p(s(e)) <0 .
From (4.17) it follows that s(t) is nonincreasing. We assume that s(0) = Ix - Px| > 0.

Suppose s(t) > 0 for all t, 0 < t < T. Dividing (4.17) by p(s(t)) and integrating
from 0 to T vyields
G(s(T)) - G(s(0)) + T <O

and hence
(4.18) T < G(s(0))
Therefore, s(t) must vanish for a finite T, satisfying T, < G(|x - px|). -
Corollary 4.9:

If A satisfies the uniform convergence condition with a gauge function p(s)
satisfying o(s) > cs® with 0 < o < 2 then for each x e D(A) there is a p € F such

=1

that S(t)x =p for all t>c (2 - a)-llx N

)=




If A satisfies the uniform convergence condition with a gauge function DA(s)
then the perturbation theorem (Theorem 2.6) reduces to the following simpler statement.

Proposition 4.10:

Let A be maximal monotone and let B be monotone such that A + B is maximal
monotone. If A satisifes the uniform convergence condition with a gauge function pA(s)

and FB 2 FA then A + B satisfies the uniform convergence condition with the same

gauge function.

Proof: As in the proof of Theorem 2.6 we show that FA+E = FA and therefore the projec-

tion P on F is the same as P

B o A’ the projection on F,. If [x,y] € A + B then

A

= + wit ~ €
y n, n, h ny € Ax n, Bx and

(Yox = Py ox) = (n,x = Bpx) + (ny,% ~ Bpx) > (n),x - Ppx) 2 0,Ux - By x|
and the proof is complete. L
Example 4.11:
Let: % be a domain in Rn with smooth boundary 9Q. Let H = LZ(Q) and let A

be any maximal monotone operator on H satisfying O € AO. Let o > -2 and let B

be the everywhere defined operator

(4.19) Bu =u ° (f ]u!zdx)a/z =u - ”u”u :
Q

It is not difficult to see that B C 3¢ where

(4.20) p(u) = (a + 2) )]

and therefore B 1is monotone. Since B is continuous and everywhere defined it is
maximal monotone and B = 3¢. Moreover, A + B is maximal monotone (see e.g. [2],

corollary 2.7) and for every u € D(A) the initial value problem

du a
a8 - 0
§c - Mt ullull® >

(4.21)
u(0) = Uy

has a strong solution. Clearly Oe€ F, and F, = {0} so r, b Fy. Also

—18_
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(4.22) (Bu,u - Ppu) = (Buu) = (f elfan® = hel™®
Q

and therefore B satisfies the uniform convergence condition with gauge function

a+2 s P AT
p(s) = s . Thus by Theorem 4.10, A + B satisfies the uniform convergence condition
with the same gauge function and we have:

Proposition 4.12:

For every a > -2 the solution of the initial value problem (4.21) converges
strongly to zero as t » ». For -2 < a < 0 the solution reaches its limit in finite

time and for o = 0 the convergence is at least exponential.
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§5. The inhomogeneous eguation

In this section we study the asymptotic behavior as t + = of solutions of the

initial value problem

g% + Au 2 f(t)
(5.1)

u(0) = x
By a solution of (5.1) we mean a weak solution in the sense of [2], (Chapter 3, defini-
tion 3.1). It was proved in [2], [4] that if f € Ll(O,T;H) then for every x € H,
(5.1) has a unique solution u(t) € C([0,T];H). Moreover, if v(t) is a solution of

the initial value problem (5.1) with f(t) replaced by g(t) then

138
(5.2) luct) = v)| < |uts) - v(s)| + [ |£(0) - g(o) o, 0<s<t<T
S

In Section 2 we saw that if A satisfies the convergence condition and f(t) = 0
then the solution of (5.1) converges strongly as t » ® to a solution p of 0 € Ap.
Our next result shows that this stays true if instead of f(t) = 0 we have
£(t) € Ll(O,w;H) and the solution of (5.1) is interpreted in the weak sense.

Theorem 5.1:

Let A be maximal monotone satisfying the convergence condition. If f € Ll(O,m;H)

then for every x € H the solution of (5.1) converges strongly as t » « to a point

pe P =alto,

Proof: Let u(t) be the solution of (5.1). Given any € > 0 let T be chosen so that

(5.3) [ |f(o)|ao < e
T

and let v(t) be the solution of

g% + Av 2 0
(5.4)
v(0) = u(T)
For t > T we then have by (5.2)
t
(5.5) utt) = vt - <[ [f(o)|do < ¢
'
_20_
.. LA SR e - T

"




Hence for every ¢t,s > T
(5.6) lu(t) ~u(s)| < 2 + [vie =T -vis -1 .
But from Theorem 2.2 we know that v(t) » p as t + «» and therefore by choosing s
and t large enough the second term on the right of (5.6) can be made as small as we
wish. Consequently, wu(t) 1is a Cauchy net and we have wul(t) — u,. @as &t +m», Since P
is closed, it follows from (5.5) that u_ € F. -
Remark 5.2:

The previous theorem shows that the solutions of the initial value problem (5.1)
and the initial value problem

g%—+ Au 3 O
5.7}
u(0) = x

both converge as t > ® to elements of F. Clearly, in general, the limits are not
the same and moreover the rate of convergence to the limit may be drastically changed
when we pass from (5.7) to (5.1). For example, if A satisfies the uniform convergence
condition with gauge function p(s) and p(s) satisfies (4.13) then the solution of
(5.7) reaches its limit in finite time, whereas the solution of (5.1) cannot converge

to its limit in finite time unless f(t) has compact support.

Given any g € H we define an operator Ag by, D(Ag) = D(A) and

(5.8) Aqx =Ax - g ¥x € D(A)
Clearly Aq is maximal monotone if and only if A is maximal monotone and the initial
value problem (5.1) is equivalent to the problem

du

A NI E(E) =g
(5.9) .

u(0) = x
From this observation and Theorem 5.1 we obtain

Theorem 5.3:

Consider the initial value problem (5.1). If there exists an element fﬂn € H such
that f(t) - fm € Ll(o,m;H) and the operator Af satisfies the convergence condition
]
bt |
then for every x € H the solution u(t) of (5.1) converges strongly to an element pe€A "f_ .
_21-
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Usually, one cannot obtain information about whether or not A satisfies the

£

convergence condition from the fact that A satisfies this condition. In some cases
however this is possible. We start with the following proposition.
Proposition 5.4:

Let A be maximal monotone satisfying

. = ’ = > v . i =1, +
(5.10) (y1 Yor %) x2) 0 [xi yi] € A i 1,2, such that Xy X,

= LY .
If (X + &) is compact then for every f € R(A), A satisfies the convergence condition.

£

Proof: Clearly f € R(A) implies A-lf = Aglo # ¢. Also (I + A)—1 compact implies

that (I + Af)—l is compact since
(5.11) (x + 2 te = (34 Af)'l(x - )
From the assumption (5.10) we have
(y - £, x - ﬁx) >0 Yix,y] € & S.&. xF Px
where P is the projection on A-lf. Therefore
(z,x - Ex) >0 Vix,z] € Af
and the result follows from Proposition 3.2. L
A somewhat similar situation holds in the case where A = 3¢ and ¢ has compact
level sets. In this case we have,
Proposition 5.5:
Let ¢ be a proper convex l.s.c. function for which the level sets

(5.12) K(R /Ry) = {x : x| <R~ w(x) <R}

1

are precompact for all Rl > 0 and R2 real. If A = 3¢ then for every f € R(A), Af

satisfies the convergence condition.

1

Proof: Since fe R(A), A, 0# ¢. Let fe AL then
v(x) - (£,x) > v(E) - (£,8) ¥x € H
Therefore
y = Min{p(x) - (f,x)} = () = (£,8) > -= .
X€H
Let
(5.13) V(x) = ¢(x) - (£,x) - ¥
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Clearly V¥ (x) is proper convex, lower semicontinuous, ¥(x) > 0 and Min y(x) = O.
X€H

Moreover QJyY = 3¢ - f = Af. In order to show that A{ satisfies the convergence condi-

tion it suffices (by Proposition 3.1) to show that the level sets of U (x) are precompact
but this is obvious in view of the definition of Y(x) and our hypothesis (5.12). .
From Proposition 5.5 we immediately obtain the following result of H. Brezis ([2],
Chapter 3, theorem 3.11).
Corollary 5.6:
Let ¢ be a proper convex l.s.c. function such that the level sets of ¢

K(R Ry = {x = | x| <R v(x) <R}

are precompact for every R, > 0 and R real. Let A = 93¢, f_ € R(A) and let f£(t)

1 2
be a function satisfying £(t) - £_¢ L'(0,=H). If u(t) is the solution of (5.1)

ot =]
then wu(t) converges strongly as t > < to a limit u_e€ A °f

©
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§6. A discrete version of the convergence theorem

In this section we discuss briefly a discrete version of Theorems 2.2 and 5.1. This
version consists of replacing the differential equation defining S(t)x by the finite

difference scheme

i Bk +Ax 20
A n
(6.1) k
Xg = X
or equivalently
(6.2) xn = J)\nxn'l’ xo = x

and studying the convergence of xn as n > ., We shall see that if A satisfies the
©

convergence condition and z A = o then xn > p€ F as n > . Actually, we shall

allow for some errors in thz—;ifference scheme (6.1) and rather than defining the

sequence {xn} by (6.2) we shall define it by

(6.3) xn = an(xn_1 + en), x0 = X

where en is an error term. From (6.3) we have

. + = +
(G2 %) *n Anyn o S [xn'yn] =k

and we shall henceforth, in this section, denote the element e Axn defined by (6.4)
by Axn.
We start with some general properties of the sequence {xn} defined by (6.3).
Proposition 6.1:
Let A be maximal monotone with A_lo # ¢ and let P be the projection on
©
F = A-lo. Let {xn} be the sequence defined by (6.3). If 21 len[ < » then

i) |x = Px [ <M for all n.
n )

ii) 1lim |x - Px | exists.
n n
n—m

iii) 1lim Px = p € F exists.
n-o 2
iv) If furthermore ww(x) S F then xn ~pe F as n > >, Here —~ means weak

convergence in H and ww(x) is the weak w-limit set of x i.e.

ww(x) = {y dn, > @ such that % =y}
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Proof: We have

.5) — < — = |g 3 ) < = b + |
(6.5) lxn Pxn| < ]xn Pxn_l| | An(xn_l en) [xr-I‘ ]xn—l xn_ll |e
Iterating (6.5) between k and n > k we obtain
(6.6) b= Do lis e wpe bow B e |

n n k k v Jj

which implies (i). Taking the upper limit on n in (6.6) yields
(6.7) limsup ]x - Px l < |x - Bx | + Z le.] vk

n Ry o Yk k p 5

n>e j=k+1
Taking now the lower limit on the right hand side of (6.7) proves (ii). To prove (iii)
note that from the definition of P it follows that
2 2 2

.8 =P — - e
(6.8) Pxn xkl < |xn kal Ixn %

Also,

= - = |J + - < - P
(6.9) [xn ka| | An(xn-l en) kal —-Ixn—l xk[ + |en|
Iterating (6.9) down to n = k we obtain

n
fx =px | < |x, —Px|+ T |[e.l
n k k k jukel
and therefore
n n
2 2 2
(6.10) EREE Yl Nt T S AT
j=k+1 ) j=k+¢1 )

Substituting (6.10) into (6.8) and using (ii) it follows that Pxn is a Cauchy sequence
and therefore converges to some p € F.
Finally, to prove (iv), note that from (i) and (iii) it follows that (xn} is

bounded. Let X ~ L. From our condition it follows that ¢ € F. By the definition

k
of P we have
(6.11) (% =B N =R ) Y
n n, n,
Letting n, » ®» we conclude that £ = p = 1lim Px . Since the limit is independent of
n—»o
the sequence (nk} it follows that X “p a n + o, L]
- 2 5_




Remark: If we define [xn} by (6.2) i.e. with L 0 for all n, it was shown by
H. Brezis and P. L. Lions that if T A: = ®, Axn + 0 for any initial x € H and
therefore xn -~ p € F. Since clearly Axn -+ 0 implies mw(x) C F this result also
follows from Proposition 6.1 once we know that Axn + 0. H. Brezis and P. L. Lions [5]

o

also showed that if A = 9d¢ then Z An = » implies Axn + 0 and therefore XD
n=1
In the linear case part (iv) of Proposition 6.1 can be improved as follows.

Proposition 6.2:

Let A be linear maximal monotone. If W¥x € H we have for the sequence (xn}
defined by (6.2) Axn +~ 0 then ¥x € H, xn -+ Px where P 1is the orthogonal projection
on F = N(A).

Proof: If A is linear AO = 0 and therefore F # ¢. Also for maximal monotone A
we have H = N(A) ® R(A) where R(A) is the closure of the range of A. This implies

that for every € > O there are y_€ D(A) and r such that

0 0
(6. - = + .
(6.12) X Px Ayo Iy |r0| < g
Starting the iteration with (6.12) and noting that JA Px = PXx we obtain
n
(6.13) X ~Px=AaAy +=x
n n n
= = G i i > 0 «13) 3 i
where i JX yn_1 and r JA r a1 Since by our assumption Ayn (6.13) implies
n n
limsup |x = PX| < & -
n-w 3
and since € > 0 is arbitrary xn PR As Wy R ®g -

We now turn to the discrete analogue of Theorem 5.1.
Theorem 6.3:
Let A be maximal monotone satisfying the convergence condition. Let Xo = X € H and

%n = JA (xn_1 + en), s 12609

If J A =« and |} Ien| ‘® then x converges strongly as n + ® to some pe F.

-26-

e




Proof: From the definition of xn we have

(6.14) x =-Px +)2Ax = x -Px +e .
n n n n n-l n n

Multiplying (6.14) by xn = Pxn and rearranging we obtain
| 2

(6.15) A (Ax ,x -Px ) < |x . -Px
n n n n s n

2
= - Px & 3 =5 + (P ~P =P .
=3 a=1 lxn nl (en' = xn) ( X X X xn)

-1
By the definition of P the last term on the right of (6.15) is nonpositive and therefore,
12

A (Ax_,x = Px ) < Ix - Px
n n n ) e n-1 n-1

o = wx [F ¥ e
n n n

which implies

(6.16) nzl A (Ax .x - Px) <.

o
Since by assumption z An = o it follows from (6.16) that
n=1

liminf (Ax ,x =-Px ) =0
n n n

and therefore from the convergence condition

liminf |xn = Pxnl =0
noo

From Proposition 6.1 (ii) we deduce that Ixn - Pxnl -+ 0 and since Pxn + p€ F also
LR € F and the proof is complete. -

Remark: In the continuous case we saw that if A satisfies the convergence condition
with a gauge function p(s) that satisfies (4.13) then S(t)x converges to its limit
in finite time. This "finite time" convergence is very delicate and as we saw in
Section 5 once the equation

g% + Aou =0

(6.17)
u(0) = x

is satisfied only approximately i.e. there is an error term which is Ll(O,G;H) one

can no more have convergence in finite time. The discrete sequence

(6.18) X «J x
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is just an approximation to (6.17) and therefore one cannot expect convergence in finite
time for X and indeed this is impossible in the discrete case since x = p € F

Y n
implies x 1 =P € F and therefore x = p € F.

i

On the other hand if we consider the sequence

(6.19) xn = JA (xn_l - en), Xy T &

then one can hit a fixed point p in finite time, but unless all e = 0 after this r,
the fixed point p will not necessarily be the limit of the sequence {xn} and clearly
we will not have X =p for n > N.

In the case A satisfies the uniform convergence condition one can often deduce
also in the discrete case a rate of convergence of X to p. The case where all el = 0

is the simplest. In this case = Pxnl is monotonically nonincreasing and from (6.10)

passing to the limit as n » @ we obtain |p - Px | = |xk = Px and therefore

k k

(6.20) = xn| < len = Pxn|

Assuming now that A satisfies the uniform convergence condition with a strictly increas-
-
ing gauge function o (s) one deduces from (6.16) that

v 2
(6.21) Zl Xno([xn - Pxnf) < |x - Px|

which implies

2
(6.22) xn -p :_20_1 lfal_EiL_
¥
k=1 -
This is a much slower rate of convergence than the rate that was obtained in the

corresponding continuous case.
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§7. A nonlinear Neumann problem

In this section we consider a concrete example of a nonlinear Neumann problem and
study its asymptotic behavior. In the study of this example we use some of the results
that wer: developed in the previous sections as well as some ideas motivated by these
results.

Let § be a bounded domain in R" with smooth boundary 9f.. The measure of

. Let H be the Hilbert space LZ(Q) with the norm denoted by

will be denoted by |&
“'Il and let B be a maximal monotone graph with primitive 3j, satisfying 0 € R(0).

Consider the initial value problem

g% ~ B w ey 20 im  Gx 0,8
Ju .

(7.1) 5o =0 in 30 x [0,)
u(0,x) = uo(x) i R -

It is well known that for every uo € LZ(Q) the initial value problem (7.1) has a unique
solution u satisfying u € C([0,»); LZ(Q)) and ul(t) € HZ(Q) for every t > 0
(see e.g. [3]).

Moreover, the operator A = -A + B with the Neumann boundary conditions appearing

in the problem is the subdifferential of the lower semicontinuous convex function ¢

given by

5/ 1vul%ax + [ janax for ue v (@ and ) e Ll
Q Q

(7.4i2) ¢(u) =
e otherwise .

It follows immediately from Rellich's compactness theorem that the sets
K. =fu:ue L2 (@), [lull <c, ¢w <c}

are precompact in Lz(Q) for every real C. In order to use the results of the previous

sections we have to identify the set A‘lo. This we do in the next lemma.

Lemma 7.1:
Let Bl < 0 < 82 and assume that [81,82] = 8—1(0). For the operator A = -A + B

with Neumann boundary conditions, A-IO is the set of all constant functions u =y

-29=-




with Sl L 82. The projection P on this set is given by:

2 2
(7.3) Pu=(u if B <ucx8B,
B, if uc<8
where
(7.4) B = T%T [ uax
Q

Proof: Let Au = 0. Since 0 € B(0) we have u - B(u) > 0 and therefore:

(i5) 0

]

(Au,u) = f quIzdx + f B8(u) -+ udx > f IVulzdx
93 9] Q

This implies Vu = 0 a.e. and thus u = const. From (7.5) it then follows that B(u) = 0

and therefore 8., < u

A

B

To compute P we consider

1 28
2
Pu = Inf f |u = k] dx
<
Blik_ﬁz Q
and a simple computation shows that Pu is given by (7.3). L]

Combining the previous lemma with Proposition 3.2 we obtain

Proposition 7.2:

If B <0<8B, and [B;,8,] = 871(0) then for every ug € £2(Q) the solution

u(t,x) of (7.1) converges (in LZ(Q)) as t > » to a constant u_ satisfying

B, <@

1 £#

o 2' -
In the rest of this section we shall study the rate of convergence of u(t,x) to
its limit and we shall try to estimate the limit u as a function of the initial

data u We start with the following proposition.

0
Proposition 7.3:
Let B be a maximal monotone graph satisfying 0 e B(0). Let u(t,x) be the

solution of the initial value problem (7.1). If
- 1
REE) - = f u(t,x)dx
la| @

then
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=2Y
(7.5) [ lutt,o) - awl%ax <e !

1 i f2
u_ (x) - u, | dx
Q ik 9

where Y, is the smallest nonzero eigenvalue of =-A with Neumann conditions on 9Q.

Proof: Multiplying the equation in (7.1) by u(t,x) - G(t) and integrating over Q

yields:

(7.6) 2 1= a|2ax + f |va|%ax + [ B (u-wdx =0 .
Q Q

1
2at
Since B(u)(u - u) > B(u) (u - u) we have

[ B (u - @wax > [ B(w) (u - wdx = 0
Q Q

and therefore,

4a

(7.7) ac

N

f lu = Glzdx # f |Vu|2dx <0 .
Q Q

Using Poincare's inequality we obtain
1 o 1 =
3 gL f ]u = u| dx + Y f lu - u]zdx <0
€ ) 1 Q =

which implies (7.5). L
If B = 0 one obtains easily by integrating the equation over @ that u(t) = GO
for all t > 0 and therefore we have:

Corollary 7.4:

If B = 0 then

-2t 2, o

(7.8) é !u(t,x) - Goljdx <e é |uO = U dax .

In the linear case we can therefore identify the limit u_ of wul(t,x). The limit
in this case is u_ = Go and the convergence of wu(t,x) to u_ is exponential. We
shall henceforth assume that £ is a maximal monotone graph satisfying

(7.9) 871(0) = (8,,8,] where B <0 <8, .

1 2
Clearly one cannot expect exponential convergence to the limit for arbitrary B8

satisfying (7.9). Indeed, other behaviors are exhibited in the next example.

-31~




Example 7.5:
Let B satisfy (7.9) and let u(t,x) be the solution of (7.1) with u(0,x) = u,

where U, is a constant satisfying Uy > 62. In this case u(t,x) 1is independent
of x and satisfies

g—‘t‘+ B(u) 30

(7.10)

. u(0) = u,

From Proposition 7.2 we know that u(t) »u_ as t + ». The rate of convergence however
depends strongly on B. Choosing for example
0 s <B
€7-1%) B(s) =
v(s - )% s>
we obtain an explicit solution of (7.10) given by

b ) 5 e WL
(7.12) u(t) = 82 (uo 82)[1 + y(k 1)(uO 82) t]

If k > 1 the convergence of u(t) to 8, is very slow, while if k < 1, u(t) reaches
its limit 82 in finite time.

In the rest of this section we shall assume for simplicity that uo(x) > 0 and
that B satisfies:
(7.13) f{s) =0 for =& < 1 and B(s) >0 for s 2 1
Heuristically it is clear that if u < 1 the rate of convergence of u(t,x) to u_
can be at most exponential with the exponent Yl being the smallest nonzero eigenvalue
of -A with Neumann boundary conditions on 09Q. The reason for this is that for large t,
u will be near its limit u_ and thus B(u) will essentially be zero so that the
problem will behave for large values of t as the linear problem. In order to make
this heuristic argument rigorous one has to prove that u(t,x) converges to u_ in
Lw(Q). This can be done but we shall not do it here.

In order to obtain estimates on the rate of convergence to the limit u,we shall

need the following lemma.
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Lemma 7.6:
Let uO € LZ(Q), UO > 0. The solution of (7.1) satisfies
(7.14) u(t,x) € L () for every t > 0

Proof: From the maximum principle it readily follows that wu(t,x) > 0 a.e. for all

t > 0. Consider now the comparison function wv(t,x) satisfying
Ve = Av = 0 in Qx (0,®)
v ;

£2.15) — =0 in 930 x (0,=)
an

v(ix,0) = uo(x) in Q
From the maximum principle we deduce
(7.16) 0 < ultx) < vit,x} in R X (0,
For the linear problem (7.15) however, it follows easily from the fact that v = G * Yo
and the known estimates on the Green's function G (see [9]) that v(t,x) € L (Q)
for t > 0 and therefore the result follows from (7.16). L]
In our next proposition we shall use the following terminology. A maximal monotone

graph B satisfying (7.13) will be called forceful if it has the following property;

for every ¢ > 1 the solution of the ordinary differential equation

g—:*e(V)90
(T X7)
v(0) = ¢

reaches the value v

i

1 in finite time. Examples of forceful B8 are

o} s <1
(7.18) B(s) = 5
Y(s = 1) s >1
where Yy > 0 and O <a < 1.
Proposition 7.7:
Let B be forceful. For every u_ € LZ(Q), u. > 0 there is a T < = such that

0 g =

the solution wu(t,x) of (7.1) satisfies:

(7.19) uft,x) < I ave. for &> 7T .
Moreover, if u, < 1 the convergence of u(t,x) to u_ has exponential rate, whereas
if u_ =1 the limit is reached in finite time.
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Proof: From Lemma 7.6 it follows that without loss of generality we can assume that

©

uO € L (). Assuming this, it follows from the maximum principle that 0 < u(t,x) < v(t)

where v(t) 1is the solution of (7.17) with ¢ =]|u Il e Hu || <1l we are
0" @ 0" @
L (Q) L
in the linear situation and by Corollary 7.4 we have B = GO and the rate of convergence
is exponential. If Huoli w > 1 it follows from our assumptions on B that v(t)
L
reaches the value 1 in finite time and hence u(t,x) < 1 after a finite time. Let

t, be the infimum of the values of t for which Hueeoabll  =2. £ ultyex) <1
L

then for t > t_  we are again in the linear situation and hence we have convergence to

0
= u(to,x) and the rate of convergence is exponential. If u(to,x) =1 then
u(to,x) =1 a.e. and the limit u_=1 has been reached in finite time. L]

From Proposition 7.7 it follows that if B is forceful then the convergence rate

is at least exponential. In order to assure exponential convergence however, B need
: ey d .

not be forceful. It is usually sufficient that ag’Bls_l > 0, this can be seen from

the next result.
Proposition 7.8:
Let B satisfy (7.13). 1If there is a Yy > 0 such that
(7.20) plisy > yi(s = 1) “for s =1
then for every uo € LZ(Q) the convergence of u(t,x) to u_ has exponential rate.

Proof: From Poincare's inequality and our assumptions we have:

(7.21) (Au,u=Pu) = f |Vu12dx<+f 8(u) (u-Pu)dx > Yy f lu-—ﬁ!zdx<+y f |u-—1||u -Pu|dx .
Q Q Q u>1

If u satisfies u < 1 then by (7.3) Pu =u and from (7.21) we have

(7.22) (Au,u - Pu)

|v

v, lla - ell? .
If u>1 then by (7.3) Pu =1 and from (7.21) we have:

{723} (Au,u - Pu)

|v

min(y,y) (f |u - alfax + [ 3 lu - 1]%ax)
Q u2.

min(y.yl)(] jas= 1|2dx - |lol|u - 1]2 + [ Ju- llzdx) .
Q u>1
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Since u > 1 we have
f w-nao’ < @- l)+dx)2
Q
where &, = max(a,0). Therefore,
(7.24) 2i®G ~ 11 - ¢f - 180> < (f w- 1)+dx)2 <ol f (u- 1) %ax

Q Q u>1

which together with (7.23) implies

(7.25) (Au,u = Pu) > min(y,y,) [ | - l[zdx = min(y,Yl)Hu - PuH2 -
Q
Combining (7.22) and (7.25) we have always

(Au,u - Pu) z'min(w,yl)l|u— Pu”2

and the result follows from Proposition 4.7. s

We conclude this section with two lower bounds on u

Proposition 7.9:
Let uo(x) > 0 and set vo(x) = min(uo(x),l). If u_ is the limit of the solution
u(t,x) ‘of (7.1) as t > = then
(7.26) u > v (x) = 2 f v, (x)dx
gt == N0 Q 9 0
Proof: Consider the comparison function v satisfying
el Av = 0 in 2 x (0,%)
v ’
=il in 3Q x (0,%)
v(0,x) = vo(x)
From the maximum principle it follows that O S v(t,x) =1 a.e. for all t > 0. From
Corollary 7.4 we have v(t,x) TiT f vo(x)dx as t > ». To conclude the proof we
o o
shall now show that u(t,x) > v(t,x) for all t S0 Het W = e N e
T 9w
—_— - +
ot Aw B(u) 3 O
aw
(7.27) e b
w(0,x) = u,(x) - v, (x) >0
_35_
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Multiplying (7.27) by w_ = -min(w,0) and integrating over 2 we obtain

a

(7.28)
dt Q

N

lw_lzdx + f IVW_l2dx + f B(u)w dx = 0 .
Q Q

But w_(t,x) # 0 only if u(t,x) < v(t,x). Since v(t,x) <1, w_(t,x) # 0 only where
B(u(t,x)) = 0 and therefore

f B(u)w dx = 0 .
Q

: 2 ) . . .
So from (7.28) it follows that f ,w_, dx is nonincreasing and since for t =0 1t
Q

equals zero we have w_(t,x) = 0 a.e. and therefore ul(t,x) > v(t,x) and the proof
if compiete. .
In certain cases, one can obtain a lower estimate for u_ which is different from

the estimate given in Proposition 7.9. We restrict ourselves now to the case where

ug € Lm(ﬂ) and EO < 1 and conclude this section with the following result;

Proggsition 7.10:

Let uj € L (@) u, > 0 and denote m = Hu0|| .- Assume further that
L
(7.29) B(s) < y(s - 1)° for s >1
where Yy >0 and p > 1. If uy <1 then
s2(P-1)
= 1 0 2-p
(7.30) M, 2 Y= E;I- ) (m < 1)+ for 1'<p 32
and
= o e o ayP=2 .
(7.31) u, 2 Y, 2Y1 60(m v, for 2 < ¢
where
2 3 =ind
8w i -
0 |Ql f (u0 uo) dx

Q

is the initial variance of u and Yy is the smallest nonzero eigenvalue of -4 with
the Neumann boundary conditions on 3Q.

Proof: Integrating Equation (7.1) over Q vields

+ -1 [ Buax = 0

|Q| Q

ale

(7.32)
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Using (7.29) we have
du Y o
(7.33) St 7r | me-unmie.
iQI u>1
From (7.32) it follows that G(t) is nonincreasing in t and therefore u
This together with (7.5) implies
5 =2 &
- - 2
(7.34) f fa = l)2dx < f (u - ) “ax < f (@ = u)2dx L e 3 ]QIGO
u>1 u>l Q
Now if 1 < p < 2 we have
( 2-p 2 p-1 e
(7.35) [ w-Dfx < (f @-Dax Y (-1 %ax < |a| (m-uf
u>1 u>1 u>l
2-
< lul(m—l)+ Pe
while if p > 2
2 - - -2
7.36) [ -D%x< @-1°? [ @-bn%x < m-1°72 [ |u - 3 %ax
u>1 u>1 Q
=2v. ¢t
< (m - l)“_ze 1 la] 62
= i (2164 -

\ < i
e Uy

"2'!1(F—l)!

Substituting these estimates into (7.33) and integrating from zero to infinity gives

the results. s
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